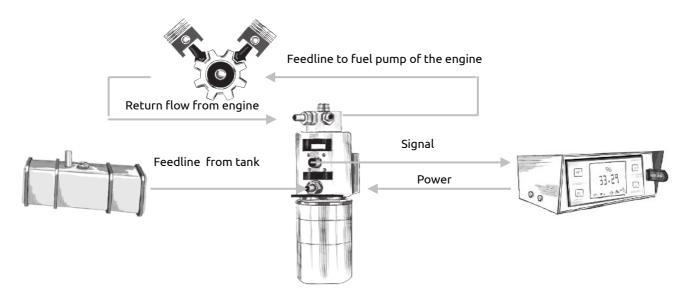


- Ideal for fleet management applications
- PT 1000 temperature probe for fuel consumption in volume and mass flow as well as CO2 exhaustion

- Small, medium and large trucks
- Buses
- Construction, demolition machines
- Agriculture machines
- Boats
- Railway

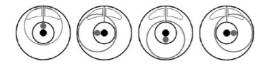

Media that can be measured:

• any fuel oil

Features and benefits:

- Up to 15 % of fuel economy, through a constant control of the driver
- Reliable instantaneous consumption display and flow totalisation
- Average fuel consumption visualisation with 3 digits after coma
- Instrument protected via in-line fuel filter
- Mechanical meter of proven technology for more than 40 years
- No interferences with vehicle existing on-board electronic (CAN-Bus)
- AIC flow meters work on all fuel injection types including engines with fuel injection of latest generations

System Setup

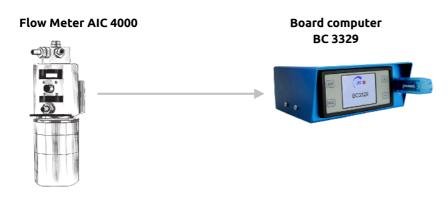


Technology

Rotary piston technology

After decades of experience, AIC SYSTEMS Ltd. has opted for the reliable volumetric flow meter technology. The rotary piston technology fits the fuel consumption measuring principle ideally. A single moving piston oscillates softly in a measuring chamber protected by a thin layer of fuel maintaining the piston self floating. This allows the meter to have the less possible mechanical friction, thus reduced wear. Under normal working conditions the line pressure loss ahead of the measuring cell is of max. 100 mbar.

Direct measuring principle

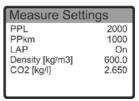

With the Direct Measurement principle, the installation of only one AIC Fuel Flowmeter is required.

The fresh and cool fuel consumed is aspirated from the tank and its volume measured by the AIC fuel Flowmeter before arriving in the AIC vortex head. In the Vortex head, the fresh fuel from the tank is mixed with the fuel returning from the engine. From the AIC Vortex head, the fuel is forwarded to the engine.

With this solution no fuel is returning back to the tank and the fuel passing through the AIC Volumetric measuring chamber represents precisely the real engine consumption.

The great benefit is that an AIC fuel consumption measuring system is ready to use right after installation.

Typical AIC 4000 Installation



72.7l/h CO2/h •• 145.4 1250.48l 3.373t

Device Settings	
Language	EN
Code	Off
Backlight	80%
Units	imperial
Display	volume

Board Computer BC3329

- View instantaneous fuel consumption
- Average fuel consumption (3 decimals)
- Fuel consumption accumulation
- Lap routine for later calculations of the individual lap characteristic
- Reading in Metric or US unit
- Easy control with start, stop logs and reset functions
- All settings are stored and will not be lost in the event of power failure
- Languages: English, German, French, Spanish and Portuguese

gs
5s
12:15
01.01.2019
start

www.flowmeter-aic.com page 2 of 3

NEMO option:

- Improved fluid management implemented
- Instantaneous mass flow indication in kg or lbs Indicating the real time CO₂ exhaustion

For the temperature compensation the measuring cell is upgraded with an PT 1000 high sensitive temperature probe

The masse calculation is based upon the the manually density input (according to DIN 51757 regulation).

All data are available in the log file

Type:	BC3329														
Ser.A:	131		Г		Г		Г								Т
FW Ver:	9.5						Г								
PPL:	2000						Г								
PPkm:	175						F								
Date:	Time:	current Consum	rtien	Temperature:		total Consumtion:		© Consumtion, Spec		Speed:		Ø Speed:		ODO:	
22.5.19	07:57:09	149.6	M	40.5	10	25033.7		148.6	Ltn	2	km/h	1.7	km/h	11234	km
22.5.19	07:57:11	149.2	Lft	40.6	°C	25033.7		148.6	L111	2	km/h	1.7	km/h	11234	km
22.5.19	07:57:13	148	L41	40.6	*C	25033.8		148.6	L%	3	km/h	1.7	km/h	11234	km
22.5.19	07:57:15	148.5	1/11	40.5	*0	25000.9		118.6	Lin	- 4	km/h	1.7	km/h	11234	km
22.5.19	07:57:17	145	Mi	40.5	*0	25034		148.6	L%n	- 6	km/h	1.7	km/h	11234	km
22.5.19	07:57:19	149.1	M	40.5	°C	25034.1		148.6	Lth:	8	km/h	1.7	km/h	11234	km
22.5.19	07:57:21	147.9	1,91	40.5	10	25034.2		148.6	Lin	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:23	145.9	1/11	40.5	*0	25034.2		148.6	Lin	12	km/h	1.7	km/h	11234	km
22.5.19	07:57:27	145.9	M1	40.5	*0	25034.3		148.6	L%n	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:29	149.9	1/11	40.5	*0	25034.5	ī	108.6	Lin	10	km/h	1.7	kmth	11234	km
22.5.19	07:57:31	147.6	Mi	40.5	10	25934.6	ī	145.6	Lin.	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:33	160.2	Mi	40.3	10	26034.7	Ī	148.6	M	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:35	149.5	M	40.3	10	29034.7	Ī	148.6	Lth	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:37	147.6	Mi	40.4	10	25034.8	ī	148.6	M	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:39	146.6	M	40.4	10	26084.9		148.6	M	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:41	148	M	40.4	°C	25035		148.6	Ltn	10	km/h	1.7	km/h	11234	km
22.5.19	07:57:43	145.2	141	40.4	10	25036.1		148.6	Lfn	10	km/h	1.7	km/h	11234	km

Technical data

AIC 4004 / 4008 / 4008s / 4015 / 4020

Model		4004	4008	4008s	4015	4020			
Measuring range	l/h (gph)	180 (2.5 160)	4200 (7.5 53)	4240 (7.5 53)	10600 (2.5 160)	301500 (7.5 400)			
App.starting flow rate	l/h (gph)	0.25 (0)	1 4 12 (0.26) (1.05) (3.2)						
Ассигасу		Better 1% o.r.							
Repeatability		Better 0.2% o.r.							
Admissible pressure	bar/ psi	-1 to 6/-14 to 87 -1 to 16/-14 to 232							
Operating temperature	Cº/Fº	-30 100 / -22 212							
Power supply		8 - 28 VDC							
Pulse signal		Square pulse, 50 % duty cycle							
Pulse rate	ppl ppgal	200 756		0 02	167 632	56 212			

All informations are subject to change.

www.flowmeter-aic.com

AIC SYSTEMS AG Ringstrasse 9 4123 Allschwil

Switzerland

T +41 61 481 84 39 info@flowmeter-aic.com

www.flowmeter-aic.com page 3 of 3